Discontinuous finite element methods for a bi-wave equation modeling d-wave superconductors

نویسندگان

  • Xiaobing Feng
  • Michael Neilan
چکیده

This paper concerns discontinuous finite element approximations of a fourth-order bi-wave equation arising as a simplified Ginzburg-Landautype model for d-wave superconductors in the absence of an applied magnetic field. In the first half of the paper, we construct a variant of the Morley finite element method, which was originally developed for approximating the fourthorder biharmonic equation, for the bi-wave equation. It is proved that, unlike the biharmonic equation, it is necessary to impose a mesh constraint and to include certain penalty terms in the method to guarantee convergence. Nearly optimal order (off by a factor |lnh|) error estimates in the energy norm and in the H1-norm are established for the proposed Morley-type nonconforming method. In the second half of the paper, we develop a symmetric interior penalty discontinuous Galerkin method for the bi-wave equation using general meshes and prove optimal order error estimates in the energy norm. Finally, numerical experiments are provided to gauge the efficiency of the proposed methods and to validate the theoretical error bounds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Element Methods for a Bi-wave Equation Modeling D-wave Superconductors

In this paper we develop two conforming finite element methods for a fourth order bi-wave equation arising as a simplified Ginzburg-Landau-type model for d-wave superconductors in absence of applied magnetic field. Unlike the biharmonic operator ∆2, the bi-wave operator 2 is not an elliptic operator, so the energy space for the bi-wave equation is much larger than the energy space for the bihar...

متن کامل

A High Order Approximation of the Two Dimensional Acoustic Wave Equation with Discontinuous Coefficients

This paper concerns with the modeling and construction of a fifth order method for two dimensional acoustic wave equation in heterogenous media. The method is based on a standard discretization of the problem on smooth regions and a nonstandard method for nonsmooth regions. The construction of the nonstandard method is based on the special treatment of the interface using suitable jump conditio...

متن کامل

کاربرد روش معادله سهموی در تحلیل مسائل انتشار امواج داخل ساختمان

With the rapid growth of indoor wireless communication systems, the need to accurately model radio wave propagation inside the building environments has increased. Many site-specific methods have been proposed for modeling indoor radio channels. Among these methods, the ray tracing algorithm and the finite-difference time domain (FDTD) method are the most popular ones. The ray tracing approach ...

متن کامل

اتصال جوزفسون بین ابررساناهای دمای بالا با ضریب عبور اختیاری

In this paper, a dc Josephson junction between two singlet superconductors (d-wave and s-wave) with arbitrary reflection coefficient has been investigated theoretically. For the case of high Tc superconductors, the c-axes are parallel to an interface with finite transparency and their ab-planes have a mis-orientation. The physics of potential barrier will be demonstrated by a transparency coeff...

متن کامل

Solution of Wave Equations Near Seawalls by Finite Element Method

A 2D finite element model for the solution of wave equations is developed. The fluid is considered as incompressible and irrotational. This is a difficult mathematical problem to solve numerically as well as analytically because the condition of the dynamic boundary (Bernoulli’s equation) on the free surface is not fixed and varies with time. The finite element technique is applied to solve non...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 80  شماره 

صفحات  -

تاریخ انتشار 2011